Wind and Turbulence Measurements with RPAS during the ISOBAR Campaign

Alexander Rautenberg¹, Martin Schön¹, Kjell zum Berge¹, Hasan Mashni¹, Patrick Manz¹, Marie Hundhausen¹, Andreas Platis¹, Jens Bange¹, Stephan Kral², Line Baserud², Joachim Reuder²,

Rostislav Kouznetsov³, Ewan O'Connor³, Irene Suomi³ and Timo Vihma³

¹ University of Tübingen, Environmental Physics, Tübingen, Germany (alexander.rautenberg@uni-tuebingen.de)

² University of Bergen, Geophysical Institute and Bjerknes Centre for Climate Research, Bergen, Norway

³ Finnish Meteorological Institute, Meteorological Research, Helsinki, Finland

2nd Baltic Earth Conference: Regional variability of water and energy exchanges

Helsingor, Denmark, 14. June 2018

ISOBAR (Innovative Strategies for Observations in the arctic atmospheric Boundary IAyeR)

Funded by the Norwegian Research Council (9 MNOK) + In Kind Project Partners:

Geophysical Institute, University of Bergen Uni Research AS, Bergen The University Centre in Svalbard, Longyearbyen Finnish Meteorological Institute, Helsinki University of Tübingen University of Applied Sciences Ostwestfalen-Lippe Leibniz University Hannover (Marquette University, Milwaukee) University of Oklahoma, Norman (OU) University of Colorado, Boulder (CU) Wageningen University, Netherlands

Outline

- motivation of the project ISOBAR
- characteristics of, and problems with stable atmospheric boundary layers
- methods: remotely piloted aircraft systems (RPAS)
- ISOBAR setup in Hailuoto, Finland in February 2017
- analysis of one exemplary flight during stable conditions
- outlook on analysis of campaign #2 in February 2018

Motivation

- atmospheric boundary layer (ABL) processes in the Arctic
- turbulence within the stable ABL

Goal

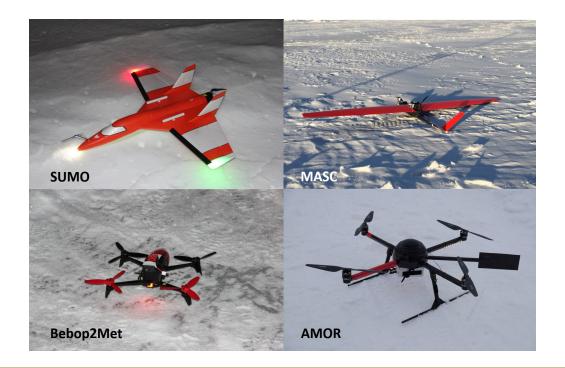
improvement of ABL parameterization schemes

Approach

- observations targeting all relevant processes
 - automatic weather stations (AWS)
 - profiling with remotely piloted aircraft systems (RPAS)
 - remote sensing, ground based measurements
- numerical modelling

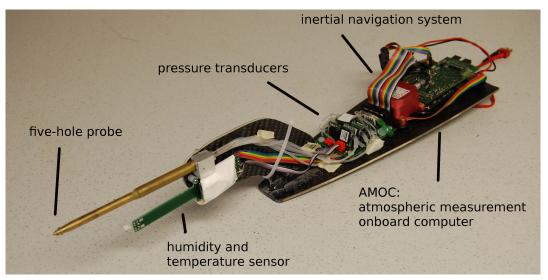
Characteristics of the Stable ABL

- Weak turbulent fluxes
- Strong gradients
- Inversions
- Shallow ABL height
- Low Level Jets (LLJ)

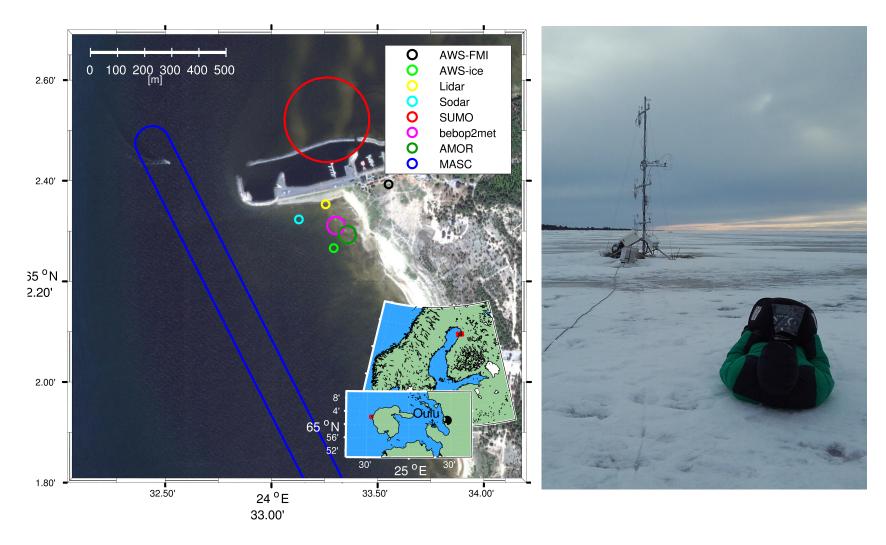

Problems with Stable ABL in Numerical Models

- poor vertical resolution for shallow ABL
- warm temperature bias in numerical weather prediction and climate models
- overestimation of turbulent mixing rates
- overestimation of the ABL height

Methods


- measurement strategy
 - ground based flux and met stations
 - ABL remote sensing and profiling systems
 - numerical modeling experiments (SCM, LES, WRF)
 - RPAS

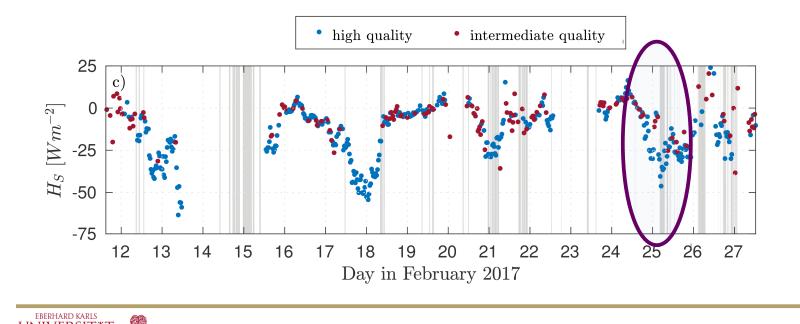
MASC-2: Multi-purpose Airborne Sensor Carrier

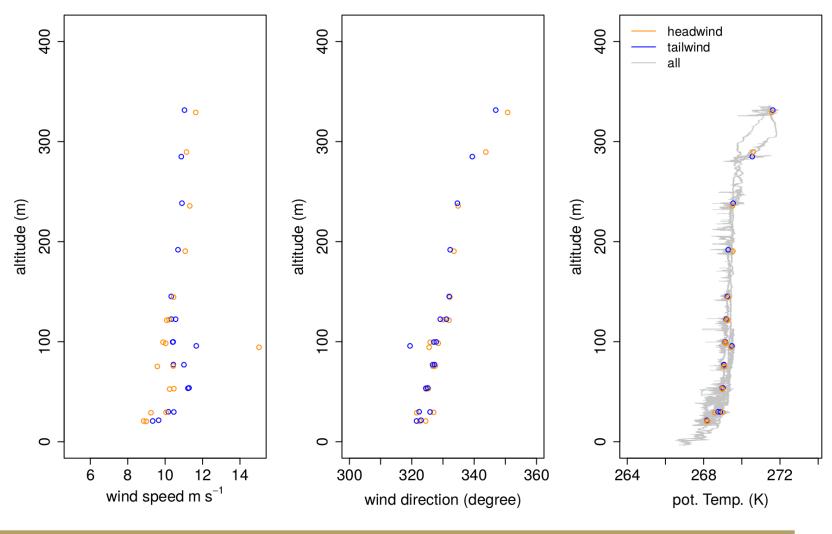

EBERHARD KARLS UNIVERSITÄ TÜBINGEN

wingspan:	3.5 m
total weight:	< 6 kg
incl. sci. Payload:	1.5 kg
cruising speed:	25 m/s
endurance:	~ 1 hour
electrical engine	pusher
autopilot:	Uni Stuttgart

measurement system:

- 3D wind vector (100 Hz)
- air temperature (100 Hz)
- water vapour
- data link to groundstation

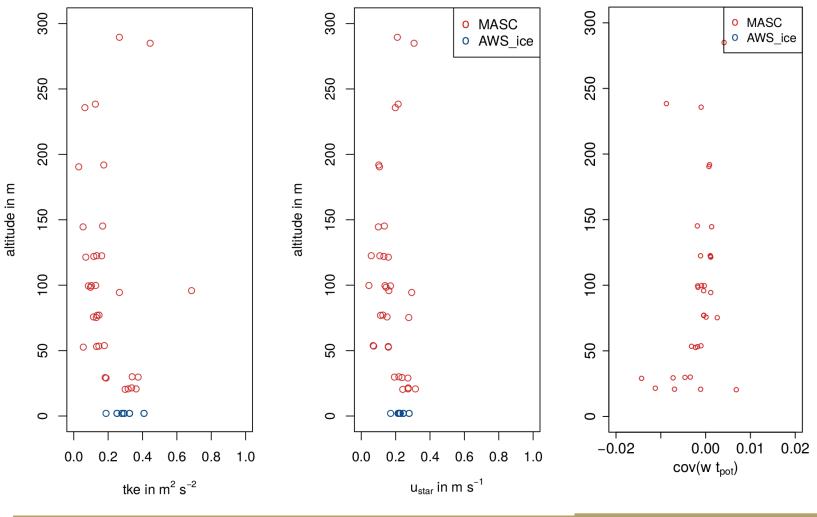

ISOBAR Setup 2017



ISOBAR Hailuoto Campaign 2017 – Flight 33

- exemplary analysis of one flight
- case study of a cooling event in the morning of the 25. of February
- profiles of mean quantities and turbulence parameters to derive a complete picture of the ABL

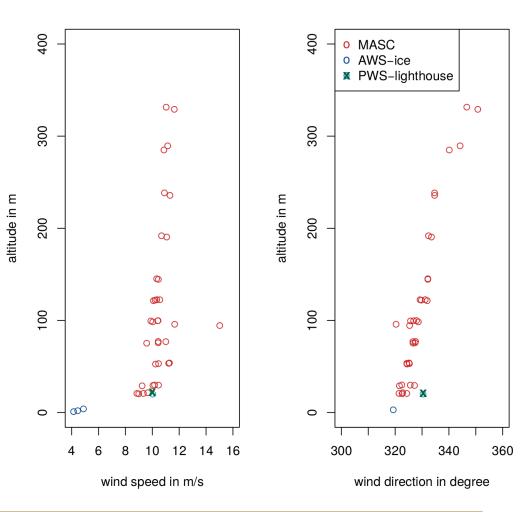
Wind Speed, Wind Direction and Potential Temperature


Flight33 2017-02-25 06:14 to 07:04 UTC

9

MASC-2 Turbulence Measurements

Flight33 2017-02-25 06:14 to 07:04 UTC


EBERHARD KARLS UNIVERSITAT TÜBINGEN

MASC-2: Complete Picture of the ABL

- wind speed
- wind direction
- temperature
- turbulence statistics
- fluxes

Future work:

- normalisation with boundary layer height
- plot flux profiles
- comparison to theory
- process a catalogue of all flights

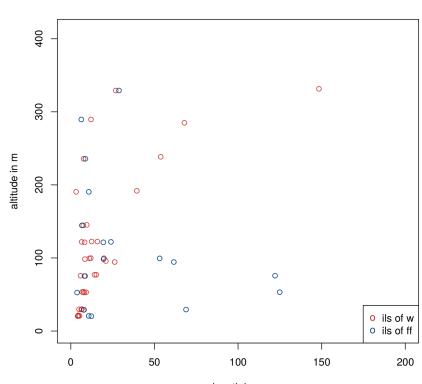
Flight33 2017-02-25 06:14 to 07:04 UTC

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Outlook: Analysis of Hailuoto Campaign in Feb 2018

- ground stations
 - LIDAR wind profiler (Windcube v1)
 - SODAR (FMI)
 - SODAR (Scintec MFAS, GFI)
 - 10 m mast
 - EC Stations
- MASC-3
- 8 IOP in stable conditions

Thank you!


Webpage 'umphy' Uni Tübingen: www.geo.uni-tuebingen.de/umphy

MASC-2 Turbulence Measurements

- high resolution temperature and wind speed measurements
 - spectral analysis of the wind speed and temperature measurement
 - Kolmogorov's theory
- long enough sampling to ensure statistical significance of the measurement and reduce errors
 - integral length scale
 - autocorrelation function
- comparison with ground-based measurements

EBERHARD KARLS

Flight33 2017-02-25 06:14 to 07:04 UTC

length in m

